THE LE300 LITHIUM EXTENSION BATTERY IS A FULLY SCALABLE SOLUTION TO ENHANCE PERFORMANCE AND ADD CAPACITY TO LEAD ACID BATTERIES IN SOLAR AND ANY OTHER KIND OF ENERGY STORAGE SYSTEMS. THEY CAN BE USED WITH NEW OR EXISTING 12 V LEAD ACID BATTERIES. JUST STACK THEM IN PARALLEL TO MEET YOUR SPECIFIC SYSTEM SPECS

Like in all BOS AG Hybrid battery systems the lithium battery takes most of the charging cycles while the lead acid battery provides inexpensive backup capacity. The lead acid battery is charged with higher priority, the lithium battery takes all surplus energy. This helps to increase the lead acid battery life. The system recognizes the lead acid battery voltage and automatically starts to support the lead acid battery with a maximum current of 12.5 A per unit. Bigger loads get supplied by the lead acid and the lithium battery in parallel, resulting in smaller currents for each battery.

CORE BENEFITS
- Flexible capacities by simply connecting several packs
- State of the art LiFePO₄ batteries
- Retrofitting & extension of already installed systems without change in wiring or other components
- No additional controller needed, simply connect directly to the lead acid batteries
- Lead acid battery is charged with higher priority, lithium battery is discharged first
- Lithium performance and lead acid cost advantages are combined
- Plug & Play > simply connect two cables
- Robust housing with variable fixing possibilities
- Integrated heating for low temperature charging
LE300

System voltage
- 12 VDC

Nominal voltage
- 12.8 VDC

Voltage range
- 11 – 15 VDC

Battery packs used in LE300
- 4x 1IR26/65 – 8 LiFePO4 rechargeable battery

Nominal lithium capacity
- 25.6 Ah/328 Wh

Usable lithium capacity
- 90 % (23 Ah/295 Wh)

Recommended lead acid capacity for each LE300 (not included)
- 70 – 125 Ah @ 12 VDC

Recommended lithium/lead acid capacity ratio (net)
- 1/3 in solar home applications. Values vary depending on needed autonomy and on application.

Continuous charging current
- Max. 12.5 A between 5 and 40 °C, at higher and lower temperatures current is limited

Continuous discharging current
- Max. 12.5 A between 5 and 40 °C, at higher and lower temperatures current is limited

Battery efficiency
- > 90 %

Housing dimensions
- 175x229x67 mm

Weight
- 3.4 kg

Connection terminals
- RAST 5 power/mini module 4 pin RS485

Recommended wire size
- 1.5 – 4 mm²

Ambient temp. (operation & warehousing)
- -20 – 50 °C ambient temperature with maximum battery life at 15 - 25 °C. Warehousing temperature 10 – 35 °C.

Low and high temperature protection, heating, charging & discharging
- Temp. sensor prevents lithium battery charge under -5 °C or above 55 °C cell temp. Charging starts once cell temp. is higher than -5 °C. Device has an integrated heating that is active between -20 °C and 10 °C cell temp. Discharge possible between -10 °C and 60 °C cell temp. At cell temp. below -10 °C system is running in pure lead acid mode for higher battery lifetime.

Lithium cell balancing
- Included

Protection features
- Overcurrent, overvoltage, short circuit, deep discharge, wrong polarity protection.

Operation mode/compatible external batteries
- Works in combination with any 12 V lead acid battery & lead acid charge controller.

Connection possibilities
- Packs can be connected in parallel with each other (see exemplary configurations in the table below).

Max. parallel LE300s
- In standard version, a maximum of 24 LE300 can be connected in parallel, higher quantities possible after consulting BOS partner.

Exemplary parallel combination

<table>
<thead>
<tr>
<th>Qt. in parallel</th>
<th>Total nominal voltage</th>
<th>Total lithium capacity</th>
<th>Continuous charging current to LEs</th>
<th>Continuous discharging current from LEs</th>
<th>Recommended lead acid capacity (not included)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>12.8 VDC</td>
<td>153.6 Ah/1.97 kWh (138.2 Ah/1.77 kWh)</td>
<td>Max. 75 A</td>
<td>Max. 75 A</td>
<td>4 – 12 kWh</td>
</tr>
</tbody>
</table>